2. Wang Q, Zhang B, Xiong WC, Mei L: MuSK signaling at the neuromuscular junction. J Mol Neurosci 2006;30:223-226.
3. Glass DJ, Yancopoulos GD: Sequential roles of agrin, MuSK and rapsyn during neuromuscular junction formation. Curr Opin Neurobiol 1997;7:379-384.
4. Rotundo RL, Rossi SG, Kimbell LM, Ruiz C, Marrero E: Targeting acetylcholinesterase to the neuromuscular synapse. Chem Biol Interact 2005;157-158:15-21.
5. Vianello A, Racca F, Vita GL, Pierucci P, Vita G: Motor neuron, peripheral nerve, and neuromuscular junction disorders. Handb Clin Neurol 2022;189:259-270.
9. Lescouzères L, Bordignon B, Bomont P: Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022;15:956582.
11. Eijkenboom I, Vanoevelen JM, Hoeijmakers JG, Wijnen I, Gerards M, Faber CG, et al: A zebrafish model to study small-fiber neuropathy reveals a potential role for GDAP1. Mitochondrion 2019;47:273-281.
12. Vettori A, Bergamin G, Moro E, Vazza G, Polo G, Tiso N, et al: Developmental defects and neuromuscular alterations due to mitofusin 2 gene (MFN2) silencing in zebrafish: a new model for Charcot-Marie-Tooth type 2A neuropathy. Neuromuscul Disord 2011;21:58-67.
14. Fetcho JR: The utility of zebrafish for studies of the comparative biology of motor systems. J Exp Zool B Mol Dev Evol 2007;308:550-562.
15. Panzer JA, Gibbs SM, Dosch R, Wagner D, Mullins MC, Granato M, et al: Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev Biol 2005;285:340-357.
17. Beattie CE, Hatta K, Halpern ME, Liu H, Eisen JS, Kimmel CB: Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev Biol 1997;187:171-182.
19. Panzer JA, Song Y, Balice-Gordon RJ:
In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J Neurosci 2006;26:934-947.
26. Babin PJ, Goizet C, Raldúa D: Zebrafish models of human motor neuron diseases: advantages and limitations. Prog Neurobiol 2014;118:36-58.
32. Rodriguez RS, Haugen R, Rueber A, Huang CC: Reversible neuronal and muscular toxicity of caffeine in developing vertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2014;163:47-54.
35. Mori S, Kubo S, Akiyoshi T, Yamada S, Miyazaki T, Hotta H, et al: Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am J Pathol 2012;180:798-810.
42. Hostelley TL, Nesmith JE, Zaghloul NA: Sample preparation and analysis of RNASeq-based gene expression data from zebrafish. J Vis Exp 2017;128:56187.
44. Steele SL, Prykhozhij SV, Berman JN: Zebrafish as a model system for mitochondrial biology and diseases. Transl Res 2014;163:79-98.
45. Eimon PM, Rubinstein AL: The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin Drug Metab Toxicol 2009;5:393-401.
46. Oliveira NA, Pinho BR, Pinto J, Guedes de Pinho P, Oliveira JM: Edaravone counteracts redox and metabolic disruptions in an emerging zebrafish model of sporadic ALS. Free Radic Biol Med 2024;217:126-140.
48. Müller JS, Jepson CD, Laval SH, Bushby K, Straub V, Lochmüller H: Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes. Hum Mol Genet 2010;19:1726-1740.
52. Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher NO, Gillingwater TH, et al: Automated in vivo drug screen in zebrafish identifies synapse-stabilizing drugs with relevance to spinal muscular atrophy. Dis Model Mech 2021;14:dmm047761.
54. Nelis E, Erdem S, Van Den Bergh PY, Belpaire-Dethiou MC, Ceuterick C, Van Gerwen V, et al: Mutations in GDAP1: autosomal recessive CMT with demyelination and axonopathy. Neurology 2002;59:1865-1872.
55. Simões MG, Bensimon-Brito A, Fonseca M, Farinho A, Valério F, Sousa S, et al: Denervation impairs regeneration of amputated zebrafish fins. BMC Dev Biol 2014;14:49.
56. Butler L, Adamson KI, Johnson SL, Jestice LH, Price CJ, Stavish D, et al: HDAC6 inhibition partially alleviates mitochondrial trafficking defects and restores motor function in human motor neuron and zebrafish models of Charcot-Marie-Tooth disease type 2A [Preprint]. Posted 2022 Jul 5. bioRxiv
https://doi.org/10.1101/2022.07.05.498819
58. Kim JY, Choi WI, Kim YH, Tae G: Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 2013;34:1170-1178.
60. Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marín-Juez R, et al: Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 2013;62:246-254.